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Fig. 8. Oscilloscope photograph of dc switching pulse
and RF output pulse.

From these tests, it is reasonable to say that the

switching time is less than 100 ns.

POWER HANDLING CAPABILITY

Average and peak power levels at various pulse

widths were used to check the power handling capability

of the ferroelectric switch.

It was found that the maximum average power the

switch could handle and still exhibit the above quoted

characteristics was approximately 500 milliwatts. This

value changes slightly with peak power and pulse width.

At an average power level of 500 mW the unit starts to
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limit and reflection occurs. No apparent damage oc-

curred up to a maximum input power of .5 watts.

It appears feasible that the unit could be retunecl to

operate at higher power levels but then it -would not

function at reduced powers.
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Computation of Impedance and Attenuation

TEM~Lines by Finite Difference Methods

M. V. SCHNEIDER, MEMBER, IEEE

Abstract—The characteristic impedance and the attenuation of

transmission lines supporting TEM modes can be computed by using

tlnite difference methods for solving the Laplace equation for the

domain detined by the inner and the outer conductor. The difference

equations carE be solved by machine computation and the impedance

and the attenuation is obtained by integrating thle field gradients and

the squares of field gradients over both boundaries.

The case of a shielded strip transmission IIine is treated as a

numerical example. A computation time of approximately 0.015

hour on the IBM 7094 is required for achieving an accuracy of 0.5

percent for the impedance and 2 percent for the attenuation.

The kite difference method is also used for lines which are

partially filled with dielectric material and it is concluded that low

attenuations are obtained by placing the dielectric material in such

a way that high field regions are avoided.
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INTRODUCTION

T
HE COl\fl PUTATION of the characteristic im-

pedance and the attenuation of various transnlis-

sion lines supporting TEM modes is a problem of

considerable importance for the design of microwave

circuits. The impedance and the attenuation of such

lines can be computed by using conformal transformat-

ion techniques. Various dictionaries and lists of con-

formal transformations covering a large number of cases

have been published by l\loon and Spencer [1], Kober

[2], and Binns and Lawrenson [3], however, only a

limited number of the transformations are applicable

to transmission lines which occur in practice. It is,

therefore, understandable that considerable work has

been spent on numerical techniques for computing the

characteristic impedance of several transmission lines.
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A few recent examples are the variational method by

Duncan [4], the orthonormal block analysis used by

Cruzan and Garver [5], and the approximate solution

of an appropriate integral equation by Cristal [6].

The purpose of this paper is to show that finite differ-

ence techniques are particularly suited for the evalua-

tion of the characteristic impedance as well as the at-

tenuation of transmission lines by machine computa-

tion. The technique consists basically of a method for

solving the field equations by replacing the domain be-

tween the conductors by a finite set of points called

mesh points and by solving the Laplace equation in

finite difference form by digital computation.’ The

technique can be extended, with certain restrictions, to

transmission lines which are partially filled with dielec-

tric material. It is furthermore possible to use similar

methods for systems of partial differential equations and

for two- or three-dimensional eigenvalue equations

which makes it possible to find solutions for guided

wave structures as well as electromagnetic resonators.

Problems of this type have been reviewed by Alder [7]

and Forsythe and Wasow [8] and they will not be

treated in the following sections.

FINITE DIFFERENCE EQUATION FOR THE

LAPLACE OPERATOR

Let us assume that the cross section of the transmis-

sion line is defined by the boundaries 1 and 2 shown in

Fig. 1. The potential function U(x, y) maybe found by

solving the Laplace equation for the domain defined by

the boundaries 1 and 2. The function U(x, y) satisfies

the linear second-order partial differential equation

u.. + Uvv = 0 (1)

with the following boundary conditions

U(a?, y) = UI = 1 (boundary 1) (2)

U(x, y) = u, = o (boundary 2). (3)

The problem can be simplified if the structure has a

line of symmetry. The domain can be reduced to a sub-

domain shown in Fig. 1, with the additional boundary

conditions

8U
—. o (boundaries 3 and 4).
dn

(4)

The problem is thus transformed into a combination of

the classical Dirichlet and the Neumann problem since

the normal derivative d U/dn is specified on boundaries

3 and 4.

A square mesh with an arbitrary mesh size h is now

1 Finite difference techniques for solving boundary value prob-
lems are also used in a paper by H. E. Green, “The numerical solution
of some important transmission-line problems, ” IEEE Trans. on
Microwave Theory and Techniques, pp. 676-69?, September 1965.
H. E. Green uses a method for finding the solutlon of a large group
of simultaneous equations. The author of the present paper uses a
scanning technique of the mesh by digital methods and discusses
furthermore the computation of attenuation.

superimposed on the subdomain. By using the notation

of Fig. 2 and assuming that U(x, y) has partial deriva-

tives of fourth order in the neighborhood around the

interior mesh point (xo, yo), we obtain with Taylor’s

theorem

U(% + h, yo) + U(MI – h, y,) – 2U(X0, yo)
U..(xo, y,) =

h~

- ; [U.zz.(ii,yo) + U-(’%, %))1 (5)

U(*O, yo + h) + U(xo, yo – h) – 2 U(fo, yo)
uw(~o, yo) =

~2

The coordinates $0, (z, ql, and qz satisfy the following

conditions

xo— Jl<&<xo<&<xo+ 12 (7)

Ya–~<~l<yo<m<yo+h. (8)

, BOUNDARY 3

I
LINE OF

SYMMETRY

Fig. 1. Cross section of transmission line with
inner and outer conductor.

U(xo, yo+h)

u(xo-h, yo+h)~–– — ———~u(xo+h, yo+h)

:

I

!
h I

‘(xO-hyO)Mu
u(xo-h,yo-h) &––&m-&xo+h,yo-h)

“(xo,yo-h)

Y

L x

Fig. 2. Superposition of square mesh on subdomain .S and
notation used for potential U for adjacent mesh points.
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The combination of (1), (5), and (6) results in THE RELAXATION PROCESS

U(xo + k, yo) + U(ZO – L yo) + U(fo, Yo + ~) A review of the more common methods for solving

+ U($o, y, – k) – 4U(*0, y,) = J(h’) (9)
(10) or similar equations of higher order on a twc}- or

three-dimensional domain has been given by Frankel

where 8(h4) is an error term of fourth! order. This rela- [9], Southwell [10], and more recentl~ by Fo&the and

tionship can be represented by the following symbolic Wasow [8]. The conclusion is that the most effective

notation methods are still the numerical procedures origin ally

01 () U(XO – /2, YO+ k) U(XO,YO+ h) U(*O + k YO + ~z)

I 1[

1 –4 1 U(2O – ?2,yo) U(xo, Yo) U(*O + k, yo)

1

= 8(L’). (10)

01 0 U(XO – h, YO – h) U(*O, YO – h) U($O + 11, YO – ~)

The elements of the first matrix rel?resent the coeffi-

cients corresponding to a subset of nine adj scent mesh

points, and the multiplication of the two matrices is

dejined by

It is of course possible to write the same equation by

considering only points along the diagonals. However,

one has to keep in mind that the lattice spacing h has

to be replaced by the spacing between diagonal elements

and one obtains

0 –4 O - u = ~(hd4). (13)

Equations (10) and (13) may be combined into a

single expression. The weight of the coefficients for di-

agonal elements and for both vertical and horizontal

elements has to be different since the error term is a

function of IZ4. Since,

four times less weight must be attached to the diagonal

elements. A more detailed analysis shows that the new

error term obtained by combining (,1) and (13) with

suitable weight factors is ?i(ho). The result is thus

141

11
4 –20 4 u = a(w). (15)

The first matrix can be regarded as a Laplace Operator

written in finite difference form, and (15) becomes

L.U == 6(W). (16)

The error term can be further reduced by including

more and more mesh points. It must be remembered,

however, that other types of errors are introduced if the

inner boundary has reentrant corners because U(x, y)

does not have continuous partial derivatives when the

point (x, y) is coincident with an edge or corner point.

.—

proposed between 1908 and 1928 by Runge [11], Rich-

ardson [12], and Courant [13]. The underlying idea for

finding a numerical solution is to approximate the func-

tion U(X7 y) with a function Uj,~ which is only defined

for each discrete mesh point. llj,~ satisfies (10), ( 15),

(16) or similar equations with a vanishing error term

L . lri,k = O. (17)

An initial, or guess, value ll~k is first assigned to each

interior mesh point of the domain. Successive approxi-

mations for Uj ,k are obtained from

17~:1 = & + (.YL. U;,k. (18)

The relaxation factor a determines the rate of con-

vergence. From (10) and for a = 1/4 comes the familiar

Richardson equation

U;;l = ~ ([;;–l,k + U;H,I, + U;,tt-I + t~;,/,+1) . (19)

Successive scanning of the lattice by a systematic

procedure or by a random process will lead to a series

of numbers UJ~k which will hopefully converge into
T-.

Uj,k.

Equations (18) and (19) are not particularly suitable

for digital computing since two successive values lr~g

and U~~l have to be retained in core storage at the

same time. A more suitable numerical procedure is the

Liebmann method [11]. In its simplest form, the lattice

is scanned along successive rows, and old values for

each mesh point are discarded and repllaced by new

ones. The relaxation formula for the new value of

U~~l is

U;:l = a([[:l~,k + [f~~l,~ + U;;? I + U;,k+J

– (& – 1) U;,k (20)

or, with a= 1/4

U;;l = ~ ( U;?:,k + lf~l,,k + U:;j + ti;,k+I) . (21)

For later reference it is more convenient to write

(2o) in the form
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U;?tj-+U;+?k i- U;;: I i- U;,WI
U;;l = w

4

– (CIJ– I)u;,k (22)

with

@ = 40!. (23)

ORGANIZATION OF THE PROGRAM

The digital computer program for calculating the

attenuation and the characteristic impedance consists of

a sequence of open subroutines.

The following open subroutines are used:

1) Location Loader

2) Relaxtion Process

3) Subdivision into Finer IMesh

4) Looping between Steps 1) and 2).

A. Location Loader

It has been pointed out previously that an initial or

guess value U& must be assigned to each mesh point.

Fixed potentials are assigned to the inner and the outer

boundary and intermediate values between these two

fixed potentials are assigned to the mesh points covering

the subdomain. This procedure is illustrated for the case

of a shielded strip transmission linez shown in Fig. 3.

The subdomain between the inner and the outer con-

ductor is covered by a square mesh with mesh size h

shown in Fig. 4. It is convenient to choose the mesh

size in such a way that grid lines coincide with the

boundaries and the two dotted mirror lines in Fig. 3.

This requires that the ratios zv/b, t/b, and s/b are ra-

tional numbers.

A constant potential U1 = 1 is assigned to all mesh

points on the inner boundary and U,= O to all mesh

points on the outer boundary. An initial or guess value

U/j is assigned to all interior mesh points. This initial

value is

??’1+1-i-l
U:j = l~j~n (24)

m—1

~a=(n+k-j–l)d Ji,nO

~9J
k–1

?z+l SjSn+k–2 (25)

with the notation shown in Fig. 4. This particular choice

insures a linear potential drop on all grid lines connect-

ing the inner and the outer boundary.

B. Relaxation Process

Equations (21) and (22) are used for the relaxation

process. The procedure starts on the inner boundary and

z This type of line cannot be treated by exact conformal mapping.
It can be analysed by various conformal mapping approximations
and other numerical methods as shown by Getsinger [14], Izatt [15],
and Joines [161.

Fig. 3. Shielded strip transmission line with dotted mirror lines.
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I
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f t
j.1 j=n+k-1

Fig. 4. Subdivision of subdomain into mesh.

moves through successive rows from right to left. The

process is reversed after reaching the last point on the

subdomain. The whole net is completely scanned several

hundred times before it is subdivided into a finer

mesh with

i%~Ew= +kc)LD. (26)

It was found, as expected, that the convergence rate

can be improved drastically by using an optimum value

for Q in (22). This does not necessarily lead to a reduc-

tion in total computation time since

1)

2)

The optimum value for w is not known theoreti-

cally and has to be found by trial and error.

Equation (22) requires more instructions in ma-

chine language than (21) for relaxing a single

point. An additional point to consider is that (22)

requires two floating-point multiplications by u

and by (LO— 1) with a large number of machine

cyles. On the other hand only few machine cycles

are necessary in (21) for dividing by four because

division by four can be replaced in machine lan-

guage by a fixed-point subtraction of a binary ten

from the characteristic part of the machine word.

Figure 5 shows the value of the potential U at a fixed

point P for successive relaxations as a function of u.

The line configuration is the same as shown in Fig. 4.

Oscillations occur for sufficiently large values of co and

it can be shown that the process becomes unstable for

~~z,

C. fkbdivision into Finer Mesh

The subdivision into a finer mesh is shown symboli-

cally in Fig. 4. The refinement of the net is made by
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Fig. 5. Potential U for point P for Successive
relaxations with o = 1.0, 1.2, and 1.4.
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Fig. 6. Potential U for point. < for successive
relaxations with subdnnslons.

assigning new locations to the old mesh points in core

storage and by storing the average of the four closest

neighboring points into each storage location for a new

point. It is self evident that special precautions are

necessary on mirror lines and for mesh points adj scent

to curved boundaries.

Figure 6 shows the value of the potential U at the

fixed point P for successive relaxations and for succes-

sive subdivisions. The value of co is equal to one. The

potential reaches a different asymptotic value after

each subdivision. This is expected since the error term

is a function of the mesh size h.

D. Looping Between Subdivision of the Mesh and Relaxa-

tion Process

The relaxation process is resumed after the subdivi-

sion of the mesh and it is continued until the difference

(27)

for certain test points becomes sufficiently small. The

subdivision and the relaxation routine are repeated un-

til a sufficient number of mesh points are available close

to the boundaries to obtain the characteristic imped-

ance and the attenuation of the transmission line.

COMPUTATION OF IMPEDANCE AND ATTENUATION(

The characteristic impedance Z and the attenuation

a of a transmission line supporting a TELI mode can be

expressed in terms of line integrals of the electric field

vector En normal to the inner boundary S 1 and the

outer boundary S2

+
E.zds

R,JI ~

d

SI+S2
~._— (29)

2 &o
d Emds

J S1

with

RM = l/u8 Surface resistance

tiNo/eo = 120Tr (Ohm)

a = Conductivity of wall material

6 =.Skin depth

V= Voltage between inner and outer conductor

ds = Line differential on inner boundary S1 or on

outer boundary S2.

It has to be pointed out that a free SpalCe impedance

of 120~ is obtained for c = 3.106 m/s. It has also been

assumed that the skin depth is small with respect tcl the

line dimensions.

Values for the electric field vector En on both boll nd-

aries are obtained by calculating the difference of the

potential U for t~~70 appropriate mesh points located

adj scent to the boundary. The line incegials are ev alu-

ated by a simple summation over both boundaries.

Equation (29) shows that the surface resistance RJI

and a unit length L of the transmission line have to be

specified in order to compute the attenuation. It is con-

venient to put RM = 1 ohm and to choose one char-

acteristic dimension of the cross section of the line as

unit length L. In the case of the transmission line

shown in Fig. 3, we choose L = b and we define the

normalized attenuation a.~ as

~.v = ~ (n’P’’/ohm)
1

(30)

All subsequent results will be given in terms of the

normalized attenuation ~N.

The results of a series of computations for a shielded

strip transmission line are shown in Figs. 7 and 8 for

three fixed ratios t/b = 0.1, 0.2, and 0.3 as a functio, n of

s/b. The ratio w/b is constant for all cases and is equal

to 0.8. This particular choice was made in order to, ob-

tain lines with a characteristic impedance in the vicin-

ity of 50 ohms. The important parameters involved in

the numerical evaluation of a single point are given in

Table I.
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Fig. 7. Characteristic impedance of shielded strip transmission
line as a function of s/b with wjb = 0.8.

Fig. 8. Normalized attenuation of shielded strip transmission line
in neper/ohm as a function of s/b with w/b=0,8.

TABLE I

NUMERICAL PARAMETERS FOR COMPUTATION OF IMPEDANCE
AND ATTENUATION FORt/b=O.z, S/b=O.S, w/b=O.8

Strip Transmission Line

Total number of mesh
points on inner conductor

Total number of mesh
points on outer conductor

Number of relaxations for
each mesh point
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Fig. 10. Impedance ofpartially loaded line wkht/b=O.2,
s/b= O.5, andw/b=O.8.
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Fig. 11. Normalized attenuation of partially loaded line in
neper/ohm as a function of d/w. The unit length is equal to the
ground plane spacing b.
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Fig. 12. Current density oninner conductor in arbitrary units
for w/b=O.8, s/b =0,5, t/b =0.2, d/w= O.875, and ,,=2.3,
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Fig. 13. (;urrent density onouter conductor inarbitrary units for
w/b=O.8, s/b=O.5, t/b= O.2, d/w= O.875, and e,=2.3.

The accuracy of the impedance calculation can be

estimated by using the fact that the error term discussed

in (9) is a function of the mesh spacing i%. A further

check is obtained by comparing separately the line

integrals of the field gradients for the inner and the

outer boundary. The two integrals lead to an upper and

a lower bound for the characteristic impedance. The

accuracy of the impedance calculation is 0.5 percent.

The accuracy achieved for the computation of the at-

tenuation is lower because of increased errors due to

the high fields at the reentrant COrrlerS on the inner

boundary. This accuracy is estimated at 2 percent. The

total machine time required for the evaluation of a

single point (impedance and attenuation) on the I B h!

7094 is approximately 0.015 hour. Higher accuracies

may be achieved by further subdivisions of the mesh

and a further increase of the number of relaxations for

each mesh point. It was found, however, that the ma-

chine time required for such a procedure becomes ex-

cessive and that there are some additional problems be-

cause of the limited number of available lc}cations in

core storage.

THE STRIP TRANSMISSION LINE WITH PARTIAL

OR FULL DIELECTRIC FILLING

For practical purposes it is necessary to support the

center conductor of a strip transmission line. This can be

accomplished by filling the space between the conduc-

tors fully or partially with dielectric material. The case

of a completely filled line with a dielectric material hav-
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ing a dielectric constant G is analytically simple because

the impedance will decrease by a factor V@ and the

attenuation increases by a factor v’g. This increase is

further enhanced by the dielectric losses and it is there-

fore advisable to reduce the amount of dielectric mate-

rial in order to obtain small total losses.

Several new problems, however, arise in the case of a

partially filled line because such a line will not support

a TEIM mode which means that a characteristic im-

pedance of the line cannot be defined. It is nevertheless

possible to obtain good approximations if the line di-

mensions are much smaller than half a wavelength

which means that the operating frequency is far below

cutoff for all higher order modes. Similar assumptions

have been made in a recent paper by Wheeler [17] for

the special case of a transmission line of parallel strips

separated by a dielectric sheet.

The following results are all restricted to this static

case. This means that (21) or (22) is applied for the

whole mesh except for all mesh points located on the

interface between the two regions ~, # 1 and e,= 1. The

difference equation for these points can be derived by

requiring that the normal components of the displace-

ment are continuous at the interface and that the

finite difference equation has to be identical with (3) for

e,= 1. The result is

lri,j’+l + ~rut,j–1 Ui–l,s’ i- Ui+l,j
Ui,j = i- (31)

2(1 + ,,) 4

with the notation shown in Fig. 9.

The results for a partially loaded strip transmission

line are shown in Figs. 10 and 11. A choice of line

parameters had to be made and it was again decided to

treat a case with an impedance in the vicinity of 50

ohms. It was furthermore decided to use a dielectric

constant c,= 2.3 since most dielectric materials used in

practical circuits fall into the range G = 2.2 to 2.4. Any

other case can be treated by simply changing the input

parameters of the computer program.

A linear decrease of the impedance occurs in Fig. 10

if the ratio d/w is gradually increased. This behavior

is expected since the structure resembles a parallel

plate capacitor and since the effects from the fringe

fields including the shielding sidewalls are small. Figure

11 shows that the attenuation behaves differently. The

attenuation increases nearly linear for low values d/w

and then more rapidly as the boundary of the dielectric

material approaches the reentrant corner (d/w = 1) on

the center conductor.

This behavior can be explained as follows. The current

density on the reentrant corner is greatly enhanced if

the dielectric material reaches the corner or if the corner

is completely embedded by the material. This means

that dielectric supports should be designed in such a

way that they are far from any corner on the inner con-

ductor. The situation for the outer conductor is differ-

ent, that means the supports should extend into the

corners of the outer conductor in order to get higher

current densities in the low field regions.

Figures 12 and 13 substantiate the previous state-

ments. Figure 12 is a current density plot for the inner

conductor with d/w = 0.87.5. A comparison with the cur-

rent density for full dielectric loading shows that the

density is reduced in the corner region C because the

dielectric material does not extend into this region. Fig-

ure 13 shows the current distribution on the outer con-

ductor. The current density at point E is slightly smaller

than the density at point A on the inner conductor. The

partial dielectric loading reduces the density in the

corner region G and reduces also the effect of the shield-

ing side wall.

CONCLUSIONS

The relaxation process is a simple and accurate tech-

nique for computing the impedance and the attenuation

of transmission lines supporting TEM modes. It is par-

ticularly useful for the special case of a shielded strip

transmission line because exact solutions are not known

and good approximations are only available for limited

ranges of the line parameters.

The case of transmission lines with dielectric beads

or supports can be treated by the same technique with

certain restrictions. It is found that the dielectric should

be placed into low field regions of the transmission line in

order to reduce ohmic losses.
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