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and RF output pulse.

From these tests, it is reasonable to say that the
switching time is less than 100 ns,

PoweER HANDLING CAPABILITY

Average and peak power levels at various pulse
widths were used to check the power handling capability
of the ferroelectric switch.

It was found that the maximum average power the
switch could handle and still exhibit the above quoted
characteristics was approximately 500 milliwatts. This
value changes slightly with peak power and pulse width.
At an average power level of 500 mW the unit starts to
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limit and reflection occurs. No apparent damage oc-
curred up to a maximum input power of 5 watts.

It appears feasible that the unit could be retuned to
operate at higher power levels but then it would not
function at reduced powers.
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Computation of Impedance and Attenuation of

TEM-Lines by Finite Difference Methods

M. V. SCHNEIDER, MEMBER, TEEE

Abstract—The characteristic impedance and the attenuation of
transmission lines supporting TEM modes can be computed by using
finite difference methods for solving the Laplace equation for the
domain defined by the inner and the outer conductor. The difference
equations can be solved by machine computation and the impedance
and the attenuation is obtained by integrating the field gradients and
the squares of field gradients over both boundaries.

The case of a shielded strip transmission line is treated as a
numerical example. A computation time of approximately 0.015
hour on the IBM 7094 is required for achieving an accuracy of 0.5
percent for the impedance and 2 percent for the attenuation.

The finite difference method is also used for lines which are
partially filled with dielectric material and it is concluded that low
attenuations are obtained by placing the dielectric material in such
a way that high field regions are avoided.
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INTRODUCTION
THE COMPUTATION of the characteristic im-

pedance and the attenuation of various transmis-

sion lines supporting TEM modes is a problem of
considerable importance for the design of microwave
circuits. The impedance and the attenuation of such
lines can be computed by using conformal transforma-
tion techniques. Various dictionaries and lists of con-
formal transformations covering a large number of cases
have been published by Moon and Spencer [1], Kober
[2], and Binns and Lawrenson [3], however, only a
limited number of the transformations are applicable
to transmission lines which occur in practice. It is,
therefore, understandable that considerable work has
been spent on numerical techniques for computing the
characteristic impedance of several transmission lines.
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A few recent examples are the variational method by
Duncan [4], the orthonormal block analysis used by
Cruzan and Garver [5], and the approximate solution
of an appropriate integral equation by Cristal [6].

The purpose of this paper is to show that finite differ-
ence techniques are particularly suited for the evalua-
tion of the characteristic impedance as well as the at-
tenuation of transmission lines by machine computa-
tion. The technique consists basically of a method for
solving the field equations by replacing the domain be-
tween the conductors by a finite set of points called
mesh points and by solving the Laplace equation in
finite difference form by digital computation.! The
technique can be extended, with certain restrictions, to
transmission lines which are partially filled with dielec-
tric material. It is furthermore possible to use similar
methods for systems of partial differential equations and
for two- or three-dimensional eigenvalue equations
which makes it possible to find solutions for guided
wave structures as well as electromagnetic resonators.
Problems of this type have been reviewed by Alder [7]
and Forsythe and Wasow [8] and they will not be
treated in the following sections.

FiNITE DIFFERENCE EQUATION FOR THE
LAPLACE OPERATOR

Let us assume that the cross section of the transmis-
sion line is defined by the boundaries 1 and 2 shown in
Fig. 1. The potential function U(x, y) may be found by
solving the Laplace equation for the domain defined by
the boundaries 1 and 2. The function U(x, v) satisfies
the linear second-order partial differential equation

Usw+ Uy =0 0

with the following boundary conditions
Uz, y) =U, =1
Ulx,y) =Usg=0

(boundary 1) 2)
(boundary 2). (3)

The problem can be simplified if the structure has a
line of symmetry. The domain can be reduced to a sub-
domain shown in Fig. 1, with the additional boundary
conditions

oU

— =0

5 (boundaries 3 and 4). (4
2

The problem is thus transformed into a combination of
the classical Dirichlet and the Neumann problem since
the normal derivative d U/d# is specified on boundaries
3 and 4.

A square mesh with an arbitrary mesh size % is now

! Finite difference techniques for solving boundary value prob-
lems are also used in a paper by H. E. Green, “The numerical solution
of some important transmission-line problems,” IEEE Trans. on
Microwave Theory and Technigues, pp. 676-692, September 19685.
H. E. Green uses a method for finding the solution of a large group
of simultaneous equations. The author of the present paper uses a
scanning technique of the mesh by digital methods and discusses
furthermore the computation of attenuation.
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superimposed on the subdomain. By using the notation
of Fig. 2 and assuming that U(x, y) has partial deriva-
tives of fourth order in the neighborhood around the
interior mesh point (xo, o), we obtain with Taylor's
theorem

U(xg =+ b, 30) + Ulxo — I, yo) — 2U (wo, o)

Uz.t(xO; yo) = P
h2
- Z [U.’tx:cx(gly yO) + Zja:xxz(é% yo)] (5>
Uxo, yo + h) + U(xo, yo — k) — 2U (o, yo)
Uyy(20, y0) =
B2
2
- “4_' [Uz/wy<x0; 11) + Uyyyy (2o, "72)]- (6)

The coordinates &, &, 71, and 9, satisfy the following
conditions

x0~lz<$1<x0<£2<xo+h (7)
yo—h<771<yo<‘l72<yo+h. (8)

BOUNDARY 3

BOUNDARY 1
BOUNDAR Y 2

BOUNDAR(¢ 4

7, 7
T //T 77777

LINE OF
SYMMETRY

Fig. 1. Cross section of transmission line with

inner and outer conductor.
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The combination of (1), (5), and (6) results in
U(xo + hy 30) + Ulxo — h, yo) + U, y0 + 1)
+ U(xo, yo — k) — 4U (x0, yo) = 8(k%) (9)
where 6(4% is an error term of fourth order. This rela-

tionship can be represented by the following symbolic
notation

0 1 OY(Ulxo— & ve+ k) Ul(xo,
1 —4  1{Ux — &, 30) U (xo,
0 1 O0J\Ulxe— hyyo— k) Ul

The elements of the first matrix represent the coefh-
cients corresponding to a subset of nine adjacent mesh
points, and the multiplication of the two matrices is

defined by
A-B = Z dij'bz‘j.

LY

(11)

It is of course possible to write the same equation by
considering only points along the diagonals. However,
one has to keep in mind that the lattice spacing & has
to be replaced by the spacing between diagonal elements

ha=2h (12)
and one obtains
1 0 1
0 —4 0| -U = 6(hat). (13)
1 0 1)

Equations (10) and (13) may be combined into a
single expression. The weight of the coefficients for di-
agonal elements and for both vertical and horizontal
elements has to be different since the error term is a
function of 4% Since,

hgt = 4nt (14)

four times less weight must be attached to the diagonal
elements. A more detailed analysis shows that the new
error term obtained by combining (1) and (13) with
suitable weight factors is §(k%). The result is thus

1 4 1
4 =20 4[-U=s@). (15)
1 4 1)

The first matrix can be regarded as a Laplace Operator
written in finite difference form, and (15) becomes

L-U = 8(hv). (16)

The error term can be further reduced by including
more and more mesh points. It must be remembered,
however, that other types of errors are introduced if the
inner boundary has reentrant corners because U(x,y)
does not have continuous partial derivatives when the
point (x, ¥) is coincident with an edge or corner point.
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ToE RELAXATION PROCESS

A review of the more common methods for solving
(10) or similar equations of higher order on a two- or
three-dimensional domain has been given by Frankel
[9], Southwell [10], and more recently by Forsythe and
Wasow [8]. The conclusion is that the most effective
methods are still the numerical procedures originally

yo+ k) Ulxe 4+ iy yo + k)
Vo) U(xo + 1, y0)
vo— h)y Ulxo+ ky yvo — &)

= 8(h%). (10)

proposed between 1908 and 1928 by Runge [11], Rich-
ardson [12], and Courant [13]. The underlying idea for
finding a numerical solution is to approximate the func-
tion Ulx, ¥) with a function U;; which is only defined
for each discrete mesh point. U;, satisfies (10), (15),
(16) or similar equations with a vanishing error term

L-Uj;p = 0. (17)

An initial, or guess, value U}, is first assigned to each
interior mesh point of the domain. Successive approxi-
mations for U, ;. are obtained from

n+1 = )
Uj,k = l’j,k + al- Z/j,k.

(18)
The relaxation factor a determines the rate of con-
vergence. From (10) and for a«=1/4 comes the familiar

Richardson equation
n+1

Ujr = i(U?-l,k -+ U;'z+1,k + U;‘L,k—-1 + lfT;,:'c+1)- (19)

Successive scanning of the lattice by a systematic
procedure or by a random process will lead to a series
of numbers U5 which will hopefully converge into
Ujr.

Equations (18) and (19) are not particularly suitable
for digital computing since two successive values Uy
and U}{' have to be retained in core storage at the
same time. A more suitable numerical procedure is the
Liebmann method [11]. In its simplest form, the lattice
is scanned along successive rows, and old values for
each mesh point are discarded and replaced by new
ones. The relaxation formula for the new value of

Upitis

n+1 n41 n 71 n
Uip = a(Ujrp+ Ujpap + Usim1 + Ujrar)
— (da— D Us (20)
or, with a=1/4
n+1 n+1 n n+1l n
Use =300+ Ufie 4+ Unia + Upa). (20)

For later reference it is more convenient to write
(20) in the form
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n+1 n n+l n
et Ubie4 Useis + Ui+ U e
ik =@
4
— (@ —DUjs (22)
with
w = 4o. (23)

ORGANIZATION OF THE PROGRAM

The digital computer program for calculating the
attenuation and the characteristic impedance consists of
a sequence of open subroutines.

The following open subroutines are used:

1) Location Loader

2) Relaxtion Process

3) Subdivision into Finer Mesh

4) Looping between Steps 1) and 2).

A. Location Loader

Tt has been pointed out previously that an initial or
guess value U, must be assigned to each mesh point.
Fixed potentials are assigned to the inner and the outer
boundary and intermediate values between these two
fixed potentials are assigned to the mesh points covering
the subdomain. This procedure is illustrated for the case
of a shielded strip transmission line? shown in Fig. 3.
The subdomain between the inner and the outer con-
ductor is covered by a square mesh with mesh size %
shown in Fig. 4. It is convenient to choose the mesh
size in such a way that grid lines coincide with the
boundaries and the two dotted mirror lines in Fig. 3.
This requires that the ratios w/b, {/b, and s/b are ra-
tional numbers.

A constant potential Ui=1 is assigned to all mesh
points on the inner boundary and U;=0 to all mesh
points on the outer boundary. An initial or guess value
UY; is assigned to all interior mesh points. This initial
value is

:’] = M 1<jZn
m— 1

0 (1Z+k—j——1)'Ui,n0

Ui,j =
E—1

n+1<jsn+k—2 (25

(24)

with the notation shown in Fig. 4. This particular choice
insures a linear potential drop on all grid lines connect-
ing the inner and the outer boundary.

B. Relaxation Process

Equations (21) and (22) are used for the relaxation
process. The procedure starts on the inner boundary and

2 This type of line cannot be treated by exact conformal mapping.
It can be analysed by various conformal mapping approximations
and other numerical methods as shown by Getsinger [14], Izatt [15],
and Joines [16].
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Fig. 3. Shielded strip transmission line with dotted mirror lines.
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Fig. 4. Subdivision of subdomain into mesh.

moves through successive rows from right to left. The
process is reversed after reaching the last point on the
subdomain. The whole net is completely scanned several
hundred times before it is subdivided into a finer
mesh with

(26)

— 1
hxew = 3hoLp.

It was found, as expected, that the convergence rate
can be improved drastically by using an optimum value
for w in (22). This does not necessarily lead to a reduc-
tion in total computation time since

1) The optimum value for @ is not known theoreti-
cally and has to be found by trial and error.

2) Equation (22) requires more instructions in ma-
chine language than (21) for relaxing a single
point. An additional point to consider is that (22)
requires two floating-point multiplications by
and by {(w—1) with a large number of machine
cyles. On the other hand only few machine cycles
are necessary in (21) for dividing by four because
division by four can be replaced in machine lan-
guage by a fixed-point subtraction of a binary ten
from the characteristic part of the machine word.

Figure 5 shows the value of the potential U at a fixed
point P for successive relaxations as a function of w.
The line configuration is the same as shown in Fig. 4.
Oscillations occur for sufficiently large values of w and
it can be shown that the process becomes unstable for
w=2.

C. Subdivision into Finer Mesh

The subdivision into a finer mesh is shown symboli-
cally in Fig. 4. The refinement of the net is made by
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Fig. 5. Potential U for point P for successive
relaxations with w=1.0, 1.2, and 1.4.

€0

U=t ~
T
S
]
58 R B e
Prt bt 4 o
e
CHT T+ 4
56 —t 1 I {
“ g} T T T
[ e R S
2 [ | I ]
- (4
<
£ 54 Y
= \%V_ﬁ NO SUBDIVISION
e \\
.52 \
\\ka,o_‘ FIRST SUBDIVISION
[0~ X
50 I {

SECOND SUBDIVISION

48
5 10 15 20 25
NUMBER OF RELAXATIONS

Fig. 6. Potential U for point P for successive
relaxations with subdivisions.

assigning new locations to the old mesh points in core
storage and by storing the average of the four closest
neighboring points into each storage location for a new
point. It is self evident that special precautions are
necessary on mirror lines and for mesh points adjacent
to curved boundaries.

Figure 6 shows the value of the potential U at the
fixed point P for successive relaxations and for succes-
sive subdivisions. The value of w is equal to one. The
potential reaches a different asymptotic value after
each subdivision. This is expected since the error term
is a function of the mesh size 4.

D. Looping Between Subdivision of the Mesh and Relaxa-
tion Process

The relaxation process is resumed after the subdivi-
sion of the mesh and it is continued until the difference

N = Ujx' — Ujs (27)
for certain test points becomes sufficiently small. The
subdivision and the relaxation routine are repeated un-
til a sufficient number of mesh points are available close
to the boundaries to obtain the characteristic imped-
ance and the attenuation of the transmission line.
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COMPUTATION OF IMPEDANCE AND ATTENUATION

The characteristic impedance Z and the attenuation
a of a transmission line supporting a TEM mode can be
expressed in terms of line integrals of the electric field
vector [, normal to the inner boundary S1 and the
outer boundary S2

w v

€
0 f E,ds
s1

— E,2ds
Ry € J S1482

2 u
° f E,ds
S1

Ry =1/06 Surface resistance
A/ o) €= 1207 (Ohm)
o= Conductivity of wall material
6 =Skin depth
V' = Voltage between inner and outer conductor
ds =Line differential on inner boundary S1 or on
outer boundary S2.

Z

Il

(28)

I

(29)

with

It has to be pointed out that a {ree space impedance
of 1207 is obtained for ¢=3-10% m/s. It has also been
assumed that the skin depth is small with respect to the
line dimensions.

Values for the electric field vector E, on both bound-
aries are obtained by calculating the difference of the
potential U for two appropriate mesh points located
adjacent to the boundary. The line integrals are evalu-
ated by a simple summation over both boundaries.

Equation (29) shows that the surface resistance Ry
and a unit length L of the transmission line have to be
specified in order to compute the attenuation. It is con-
venient to put Rpr=1 ohm and to choose one char-
acteristic dimension of the cross section of the line as
unit length L. In the case of the transmission line
shown in Fig. 3, we choose L=5b and we define the
normalized attenuation ax as

b-a
ay = — (neper/ohm).
M

(30)

All subsequent results will be given in terms of the
normalized attenuation au.

The results of a series of computations for a shielded
strip transmission line are shown in Figs. 7 and & for
three fixed ratios £/0=0.1, 0.2, and 0.3 as a function of
s/b. The ratio w/b is constant for all cases and is equal
to 0.8. This particular choice was made in order to ob-
tain lines with a characteristic impedance in the vicin-
ity of 50 ohms. The important parameters involved in
the numerical evaluation of a single point are given in

Table I.
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Fig. 7. Characteristic impedance of shielded strip transmission
line as a function of s/b with w/b=0.8.

TABLE I

NUMERICAL PARAMETERS FOR COMPUTATION OF IMPEDANCE
AND ATTENUATION FOR #/6=0.2, s/b=0.5, w/b=0.8

. P . Initial First Second
Strip Transmission Line | ‘yrech | Subdivision | Subdivision
Total number of mesh
points on inner conductor 40 80 160
Total number of mesh
points on outer conductor 112 224 448
Number of relaxations for
each mesh point 100 200 400
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Fig. 10. Impedance of partially loaded line with ¢/6=0.2,

s/b=0.5, and w/b=0.8.
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w/b=0.8, s/b=0.5, t/b=0.2

The accuracy of the impedance calculation can be
estimated by using the fact that the error term discussed
in (9) is a function of the mesh spacing 4. A further
check is obtained by comparing separately the line
integrals of the field gradients for the inner and the
outer boundary. The two integrals lead to an upper and
a lower bound for the characteristic impedance. The
accuracy of the impedance calculation is 0.5 percent.
The accuracy achieved for the computation of the at-
tenuation is lower because of increased errors due to
the high fields at the reentrant corriers on the inner
boundary. This accuracy 1s estimated at 2 percent. The
total machine time required for the evaluation of a
single point (impedance and attenuation) on the IBM
7094 is approximately 0.015 hour. Higher accuracies

|
i N
|

]
G

T

Current density on outer conductor in arbitrary units for
, d/w=0.875, and ¢ =2.3.

may be achieved by further subdivisions of the mesh
and a further increase of the number of relaxations for
each mesh point. It was found, however, that the ma-
chine time required for such a procedure becomes ex-
cessive and that there are some additional problems be-
cause of the limited number of available locations in
core storage.

THE STRIP TRANSMISSION LINE WITH PARTIAL
oR FuLL DIELECTRIC FILLING

For practical purposes it is necessary to support the
center conductor of a strip transmission line. This can be
accomplished by filling the space between the conduc-
tors fully or partially with dielectric material. The case
of a completely filled line with a dielectric material hav-
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ing a dielectric constant ¢, is analytically simple because
the impedance will decrease by a factor +/e, and the
attenuation increases by a factor 4/¢. This increase is
further enhanced by the dielectric losses and it is there-
fore advisable to reduce the amount of dielectric mate-
rial in order to obtain small total losses.

Several new problems, however, arise in the case of a
partially filled line because such a line will not support
a TEM mode which means that a characteristic im-
pedance of the line cannot be defined. It is nevertheless
possible to obtain good approximations if the line di-
mensions are much smaller than hall a wavelength
which means that the operating frequency is far below
cutoff for all higher order modes. Similar assumptions
have been made in a recent paper by Wheeler [17] for
the special case of a transmission line of parallel strips
separated by a dielectric sheet.

The following results are all restricted to this static
case. This means that (21) or (22) is applied for the
whole mesh except for all mesh points located on the
interface between the two regions ¢,7#1 and ¢, =1. The
difference equation for these points can be derived by
requiring that the normal components of the displace-
ment are continuous at the interface and that the
finite difference equation has to be identical with (3) for
¢,=1. The result is

Ui,j+1 + ErUz,j_l Ui—-l,j -+ Ui—|—1,j
2(1 + ¢,) 4

Ui = (31)

with the notation shown in Fig. 9.

The results for a partially loaded strip transmission
line are shown in Figs. 10 and 11. A choice of line
parameters had to be made and it was again decided to
treat a case with an impedance in the vicinity of 50
ohms. It was furthermore decided to use a dielectric
constant €, = 2.3 since most dielectric materials used in
practical circuits fall into the range ¢, =2.2 to 2.4. Any
other case can be treated by simply changing the input
parameters of the computer program.

A linear decrease of the impedance occurs in Fig. 10
if the ratio d/w is gradually increased. This behavior
is expected since the structure resembles a parallel
plate capacitor and since the effects from the {ringe
fields including the shielding sidewalls are small. Figure
11 shows that the attenuation behaves differently. The
attenuation increases nearly linear for low values d/w
and then more rapidly as the boundary of the dielectric
material approaches the reentrant corner (d/w=1) on
the center conductor.

This behavior can be explained as follows. The current
density on the reentrant corner is greatly enhanced if
the dielectric material reaches the corner or if the corner
is completely embedded by the material. This means
that dielectric supports should be designed in such a
way that they are far from any corner on the inner con-
ductor. The situation for the outer conductor is differ-
ent, that means the supports should extend into the
corners of the outer conductor in order to get higher
current densities in the low field regions.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

Figures 12 and 13 substantiate the previous state-
ments. Figure 12 is a current density plot for the inner
conductor with d/w=10.875. A comparison with the cur-
rent density for full dielectric loading shows that the
density is reduced in the corner region C because the
dielectric material does not extend into this region. Fig-
ure 13 shows the current distribution on the outer con-
ductor. The current density at point E is slightly smaller
than the density at point 4 on the inner conductor. The
partial dielectric loading reduces the density in the
corner region G and reduces also the effect of the shield-
ing side wall.

CONCLUSIONS

The relaxation process is a simple and accurate tech-
nique for computing the impedance and the attenuation
of transmission lines supporting TEM modes. It is par-
ticularly useful for the special case of a shielded strip
transmission line because exact solutions are not known
and good approximations are only available for limited
ranges of the line parameters.

The case of transmission lines with dielectric beads
or supports can be treated by the same technique with
certain restrictions. It is found that the dielectric should
be placed into low field regions of the transmission line in
order to reduce ohmic losses.
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